Congruence, part 1

Lecture 3 Jan 24, 2021

Rings and Fields

Before we discuss the concept of congruence in Number Theory and its applications, lets review our knowledge of numbers!

○ Natural numbers $\mathbb{N} = \{0, 1, 2, 3, ... \}$. We have <u>addition</u> and <u>multiplication</u>:

 $a, b \in \mathbb{N} \rightarrow a + b, a \times b \in \mathbb{N}$

○ Integers \mathbb{Z} = {... -3, -2, -1, 0, 1, 2, 3, ... }. We have addition, subtraction and multiplication:

 $a, b \in \mathbb{Z} \rightarrow a + b, a - b, a \times b \in \mathbb{Z}$

Rings and Fields

○ Rational numbers
$$\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \right\}$$
 and \mathbb{R} .

We have <u>addition</u>, <u>subtraction</u>, <u>multiplication</u>, and <u>division</u>:

$$a, b \in \mathbb{Q} \text{ or } \mathbb{R} \to a + b, a - b, a \times b \in \mathbb{Q} \text{ or } \mathbb{R}$$
 $\frac{a}{b} \in \mathbb{Q} \text{ or } \mathbb{R} \text{ if } b \neq 0$

 $\circ \mathbb{N}$ is a **monoid** (has only addition and multiplication)

 $\circ \mathbb{Z}$ is a **ring** (has addition/subtraction and multiplication)

 $\circ \mathbb{Q}$ and \mathbb{R} are a **fields** (have addition/subtraction and multiplication/divission)

Rings and Fields

 \odot There are other kind of objects that have such properties

 \circ Example. Polynomials with coefficients in $\mathbb R$

$$\mathsf{P}=\{ p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 : a_i \in \mathbb{R} \}$$

Polynomials can be <u>added</u>, <u>subtracted</u>, <u>multiplied</u>, but if you try to divide them you often don't get a polynomial

- $\,\circ\,$ So just like $\mathbb Z$, the set of all polynomials makes a \underline{ring}
- <u>Number Theory</u> is partly about studying sets that have properties like usual numebrs

Congruence

- \circ **Fix** a natural number n > 1
- Every other integer *a* can be uniquely written as a = x n + r such that $0 \le r \le n 1$
- \circ *r* is the remainder, *x* is the quotient
- \circ We are going to care only about the remainder r of any integer $a \mod n$
- Two numbers *a* and *b* are <u>congruent modulo n</u> if they have the same remainder

 \circ We write $\underline{a \equiv b \mod n}$

• Examples. $2 \equiv 0 \mod 2$ 10 ≡ 4 modulo 3 $-1 \equiv 5 \mod 6$

Congruence

○ Little Lemma. $a \equiv b \mod n$ (a - b) i.e. a - b is divisible by n

Proof. $a \equiv b \mod n \iff a$ and b have the same remainder r modulo n

 $\Leftrightarrow a = xn + r$ and $b = yn + r \Leftrightarrow a - b = (x - y)n \Leftrightarrow a - b$ is divisible by n

 $\circ 10 \equiv 4 \mod 3$ because $3 \mid (10 - 4) = 6$

 \circ -1 ≡ 5 *modulo* 6 because 6 | (5 - (-1)) = 6

• FACT: Each number is equivalent to one of <u>n numbers {0, 1, 2, ..., n-1}</u> modulo n

The Ring structure

- Lemma. The set of numbers modulo n has a ring structure (addition, subtraction, multiplication)
- Multiplication: If $\underline{a \equiv a' \mod n}$ and $\underline{b \equiv b' \mod n}$ then $\underline{ab \equiv a'b' \mod n}$

 \circ Ex. $3 \equiv 10 \mod 7$ and $-2 \equiv 5 \mod 7$ then $-6 = 3 \times (-2) \equiv 10 \times 5 = 50 \mod 7$

• Proof: We have (ab - a'b') = a(b - b') + b'(a - a'). Since *n* divides the right-hand side, it also divides the left-hand side. So $ab \equiv a'b' \mod n$

• Multiplication: If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $a \pm b \equiv a' \pm b' \mod n$ • Proof: $(a \pm b) - (a' \pm b') = (a - a') \pm (b - b')$. Since *n* divides the right-hand side, it also divides the left-hand side.

Applications

 \circ **Q1**. Find the remainder of $3^n + 1$ divided by 4

- Answer: $3 \equiv -1 \mod 4$. So $3^n + 1 \equiv (-1)^n + 1 \mod 4$.
- If n is odd, then $(-1)^n + 1 = 0$. So remainder is 0 (it is divisible by 4)
- If *n* is even, then $(-1)^n + 1 = 2$. So remainder is 2.

Examples

• Q2. Prove that $a^2 - 1$ is divisible by 8 for all odd integers a.

(Last time we proved it by induction)

New Solution. Every odd integers is congruent to 1, 3, 5, or 7 modulo 8.

So it is enough to check these 4 numbers.

$$1^{2} - 1 = 0$$

$$3^{2} - 1 = 8$$

$$5^{2} - 1 = 24 = 3 \times 8$$

$$7^{2} - 1 = 48 = 6 \times 8$$

All are divisible by 8. Done.

You can also solve all of the following question this way

- Prove that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all $n \ge 0$.
- Prove that $a^4 1$ is divisible by 16 for all odd integers a.
- Prove that $n^3 + 2n$ is divisible by 3 for all integers n.
- Prove that $17n^3 + 103n$ is divisible by 6 for all integers n.
- Prove that $2^n + 1$ is divisible by 3 for all odd integers n

k Questions are taken from https://www.math.waikato.ac.nz/~hawthorn/MATH102/InductionProblems.pdf

Lets do one of them

- Q3. Prove that $17n^3 + 103n$ is divisible by 6 for all integers n.
- Solution. Every integer is congruent to one of {-2, -1, 0, 1, 2, 3} modulo 6 So it is enough to check the claim for n = -2, -1, 0, 1, 2, 3

$$-n = 0 \implies 17n^3 + 103n = 0$$

- $n = \pm 1 \Rightarrow 17n^3 + 103 n = \pm(17 + 103) = \pm 120 = \pm 20 \times 6$
- $-n = \pm 2 \implies 17n^3 + 103n = \pm(17 \times 8 + 103 \times 2) = \pm 342 = \pm 6 \times 57$
- $n = 3 \implies 17n^3 + 103 n = 17 \times 27 + 309 = 768 = 256 \times 3$

Some rule you might have seen before

- Q4. An integer is divisible by 9 if and only if the sum of its digits is divisible by 9.
- **Proof.** If x is an integer with digits $a_n a_{n-1} \dots a_0$, that means

$$x = a_0 + 10 a_1 + 100 a_2 + \dots + 10^n a_n$$

Since $10 \equiv 1 \mod 9$, we have $10^n \equiv 1^n = 1 \mod 9$

We conclude that $x \equiv a_0 + \dots + a_n \mod 9$

So x is divisible by 9 if and only if $a_0 + \dots + a_n$ is divisible by 9